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Motivations: oak powdery mildew pathobiome

Metabarcoding data from [JFS+16]

I n = 116 leaves, p = 114 species (66 bacteria, 47 fungies + E. alphitoides)

counts[1:3, c(1:4, 48:51)]

## f_1 f_2 f_3 f_4 E_alphitoides b_1045 b_109 b_1093
## A1.02 72 5 131 0 0 0 0 0
## A1.03 516 14 362 0 0 0 0 0
## A1.04 305 24 238 0 0 0 0 0

I d = 8 covariates (tree susceptibility, distance to trunk, orientation, . . . )

covariates[1:3, ]

## tree distTOtrunk distTOground pmInfection orientation
## A1.02 intermediate 202 155.5 1 SW
## A1.03 intermediate 175 144.5 0 SW
## A1.04 intermediate 168 141.5 0 SW

I Sampling effort in each sample (bacteria 6= fungi)

offsets[1:3, c(1:4, 48:51)]

## f_1 f_2 f_3 f_4 E_alphitoides b_1045 b_109 b_1093
## [1,] 2488 2488 2488 2488 2488 8315 8315 8315
## [2,] 2054 2054 2054 2054 2054 662 662 662
## [3,] 2122 2122 2122 2122 2122 480 480 480
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Problematic & Basic formalism

Data tables: Y = (Yij ),n × p; X = (Xik ),n × d ; O = (Oij ),n × p where

I Yij = abundance (read counts) of species j in sample i

I Xik = value of covariate k in sample i

I Oij = offset (sampling effort) for species j in sample i

Need a generic framework to model dependences between count variables

I account for peculiarities of count data
 vary over many orders of magnitude
 are overdispersed

I exhibit patterns of diversity
 summarize the information from Y (PCA, clustering, . . . )

I understand between-species interactions
 ’network’ inference (variable/covariance selection)

I correct for technical and confounding effects
 account for covariables and sampling effort
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Models for multivariate count data

If we were in a Gaussian world, the general linear model would be appropriate

For each sample i = 1, . . . ,n, it explains

I the abundances of the p species (Yi)

I by the values of the d covariates Xi and the p offsets Oi

Yi = XiΘ︸ ︷︷ ︸
account for
covariates

+ Oi︸︷︷︸
account for

sampling effort

+εi , εi ∼ N (0p , Σ︸︷︷︸
dependence

between species

)

But we are not, and there is no generic model for multivariate counts

I Data transformation (log ,
√

): quick and dirty

I Non-Gaussian multivariate distributions: do not scale to data dimension

I Latent variable models: interaction occur in a latent (unobserved) layer
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Poisson-log normal (PLN) distribution

A latent Gaussian model

Originally proposed by Atchisson [AH89]

Zi ∼ N (0,Σ)

Yi |Zi ∼ P(exp {Oi + Xᵀ
i Θ + Zi})

Interpretation

I Dependency structure encoded in the latent space (i.e. in Σ)

I Additional effects are fixed

I Conditional Poisson distribution = noise model

Properties

+ over-dispersion

+ covariance with arbitrary signs

- maximum likelihood via EM algorithm is limited to a couple of variables
5



Geometrical view
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Geometrical view (with offset)
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Intractable EM

Aim of the inference:

I estimate β = (Θ,Σ)

I predict the Zi

Maximum likelihood

PLN is an incomplete data model: try EM

log pβ(Y) = E[log pβ(Y,Z) |Y] +H[pβ(Z |Y)]

EM requires to evaluate (some moments of)

p(Z |Y) =
∏
i

p(Zi |Yi)

but no close form for p(Zi |Yi).

I [Kar05] resorts to numerical or Monte-Carlo integration.
I Variational approach [WJ08]: use a proxy of p(Z |Y). 8



Variational EM
Variational approximation: choose a class of distribution Q

Q =
{
p̃ : p̃(Z) =

∏
i

p̃i(Zi), p̃i(Zi) = N (Zi ; m̃i , s̃i)
}

and maximize the lower bound (Ẽ = expectation under p̃)

J (θ, p̃) = log pβ(Y)−KL[p̃(Z) || pβ(Z |Y)] = Ẽ[log pβ(Y,Z)] +H[p̃(Z)]

Variational EM.
I VE step: find the optimal p̃:

p̃h = arg max J (βh , p̃) = arg min
p̃∈Q

KL[p̃(Z) || pβh (Z |Y )]

I M step: update β̂

β̂
h

= arg max J (β, p̃h) = arg max
β

Ẽ[log pβ(Y,Z)]
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Optimization & Implementation

Property: The lower J (β, p̃) is bi-concave, i.e.

I wrt p̃ = (M̃, S̃) for given β

I wrt β = (Σ,Θ) for given p̃

but not jointly concave in general.

Optimization: projected gradient ascent for the complete parameter (m̃, s̃,β)

I algorithm: conservative convex separable approximations [Sva02]

I implementation: NLopt nonlinear-optimization package [Joh11]

I initialization: LM after log-trasnformation applied independently on each variables +
concatenation of the regression coefficients + Pearson residuals

PLNmodels R/C++-package: https://jchiquet.github.io/PLNmodels
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PLN: natural extensions towards multivariate analysis

I PCA: rank constraint on Σ.

Zi ∼ N (µ,Σ = BB>), B ∈Mpk with orthogonal columns.

I Network: sparsity constraint on inverse covariance.

Zi ∼ N (µ,Σ = Ω−1), ‖Ω‖1 < c.

I LDA: maximize separation between groups with means M = [µ>1 , . . . ,µ
>
K ]>

Zi ∼ N (µi = g>i M,Σ), gi a group indicator vector.

I Clustering: mixture model in the latent space

Zi ∼
K∏

k=1

πkN (µk ,Σk ), with, e.g., Σk diagonal matrices

Challenge: a variant of the variational algorithm is required for each model
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PLN network model
Model:

Zi iid ∼ Np(0p ,Ω
−1), Ω sparse, ‖Ω‖1,offdiagonal < c

Yi |Zi ∼ P(exp{Oi + X>i Θ + Zi})
Cheat: Use the PLN model and infer the graphical model of Z

(i , j ) /∈ E ⇔ Zi ⊥⊥ Zj |Z\{i,j} ⇔ Ωij = 0.

Graphical interpretation: p(Zi ,Yi) vs p(Yi)
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Variational inference

Same problem: log pβ(Y) is intractable

Variational approximation: maximize

J (β, p̃)− λ ‖Ω‖1,off = Ẽ[log pβ(Y,Z)] +H[p̃(Z)]−λ ‖Ω‖1,off

taking p̃ ∈ Q.

 Still bi-concave in β = (Ω,Θ) and p̃ = (M̃, S̃). Ex:

Ω̂ = arg max
Ω

n

2

(
log |Ω | − tr(Σ̂Ω)

)
− λ‖Ω‖1,off : gLasso problem
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Model selection
Alternative to model selection criteria

Sparsity level λ needs to be chosen.
Stability-based approach for Network by resampling: StARS

1. Infers B networks Ω(b,λ) on subsamples of size m for varying λ.

2. Frequency of inclusion of each edges e = i ∼ j is estimated by

pλe = #{b : Ω
(b,λ)
ij 6= 0}/B

3. Variance of inclusion of edge e is vλe = pλe (1− pλe ).

4. Network stability is stab(λ) = 1− 2v̄λ where v̄λ is the average of the vλe .

 StARS1 selects the smallest λ (densest network) for which stab(λ) ≥ 1− 2β

1[LRW10] suggest using 2β = 0.05 and m = b10
√
nc based on theoretical results.
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An example in connection with the news

Data: first round of the French presidential election of 2017 (source: https://data.gouv.fr)

I votes cast for each of the 11 candidates in the more than 63, 000 polling stations

I voting population varied wildly
From 10 to 105,891 , with a median at 736 and 99.5% of the stations with less than 1,700 voters.

I patterns depend on geography

Models

I no offset

I offset: log-registered population of voters to account for different station sizes

I covariate: department as a proxy for geography.

Question: find competing candidates, who appeal to different voters, and compatible candidates
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French Presidential: no offset

Inferred network Latent Positions (PCA)
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French Presidential: offset

Inferred network Latent Positions (PCA)
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French Presidential: departments

Inferred network Latent Positions (PCA)
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More ”conventional” example: Oak powdery mildew data set

Three setups

1. nr = 39 resistant samples, with covariates (orientation, distance to ground)

2. ns = 39 susceptible samples, with covariates (orientation, distance to ground)

3. both samples samples, with covariates + tree effect and interactions

Network inference

PLNnetwork + ’StARS’ for model selection

I 100 resamplings

I high level of stability (edges frequencies > 0.995)

Question: consensus or tree-specific networks?
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PLNnetwork models: resistant
Trees resistant to mildew (E. Alphitöıdes)
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PLNnetwork models: susceptible
Trees susceptibles to mildew (E. Alphitöıdes)
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PLNnetwork models: consensus
Both Trees
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PLNnetwork models: covariate effect
coefficients associated to orientation
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Discussion
Summary

I PLN = generic model for multivariate count data analysis

I Allows for covariates

I Flexible modeling of the covariance structure

I Efficient VEM algorithm

I PLNmodels package: https://github.com/jchiquet/PLNmodels

Ongoing extension...

I Confidence interval and tests for the regular PLN

I Other covariance structures (spatial, time series, ...), mixture models, . . .

I Zero-Inflation

Following PLN Network Raphaëlle Momal’s PhD (supervized by S. Robin and C. Ambroise)

I Tree-based decomposition of the underlying graphical model

I Other Model selection criterion for network inference
24
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