Assimilation de données pour la reconstruction d'écoulements

Dominique Heitz

Fluminance team member, Irstea/IRMAR/Inria, Rennes, France ACTA team leader, Irstea, Rennes, France

Collaborators: A. Gronskis, B. Combès, C. Robinson, P. Chandramouli, S. Laizet, Y. Yang, V. Resseguier, E. Mémin

```
AG MIA/NUMM, 21-23 mai, 2019, Massy-Palaiseau & Jouy-en-Josas,
    France
```


Confronting EFD and CFD is inherent of fluid mechanics approaches

Experiments

- LDV as a reference
- HWA \rightarrow very good
- PIV \rightarrow good

DNS (Dairy et al.,2015)
$\operatorname{Re} 10000$

Numerical simulations

- DNS as a reference \rightarrow numerical wind tunnel
- A priori parameter calibration
- A posteriori simulation validation

EFD and CFD limitations

Experiments

- HWA and LDV \rightarrow pointwise
- PIV \rightarrow large scale
- TomoPIV \rightarrow very large scale

$$
\Rightarrow \text { sparse data }
$$

Numerical simulations

- Initial conditions
- Boundary conditions
- Turbulence model and parameters
\Rightarrow non " realistic" simulations

Coupling EFD and CFD with data assimilation

Objective

- Estimation of the unknown true state of interest $\mathbf{x}(t, x)$
- Recover as accurately as possible the state of the fluid flow using all available information

Question: how to do that ?

Data assimilation ingredients

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications

Sequential assimilation
Variational assimilation

Data assimilation ingredients

Experiments

- Observation model

$$
\mathcal{Y}(t, x)=\mathbb{H}(\mathbf{x}(t, x))+\varepsilon(t, x)
$$

DNS (Dairy et al.,2015)

Numerical model

- Dynamical model

$$
\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=\mathbf{q}(t, x)
$$

- Prior knowledge model

$$
\mathbf{x}\left(t_{0}, x\right)=\mathbf{x}_{0}^{\boldsymbol{b}}+\boldsymbol{\eta}(x)
$$

Data and dynamics dimensions

Data and model resolution: d vs m

- Geosciences $d \ll m$
- PIV $d \leq m$ or $d \ll m$
- Model resolution: ROM vs DNS
- Laboratory vs Industrial processes
- 2D vs 3D
- Reynolds

Data assimilation: observation and dynamics models

$\mathcal{Y}(t, x)=\mathbb{H}(\mathbf{x}(t, x))+\varepsilon(t, x)$

- Pseudo observation \rightarrow velocity, vorticity, lagrangian acceleration, thus
$\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$
- Observation \rightarrow images of particles, scalar (smoke, gaz, temperature), thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} can be nonlinear

DNS (Dairy et al.,2015)

$$
\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=\mathbf{q}(t, x)
$$

- Eulerian: ROM, Vortex particle, Lattice Boltzman, RANS, LES, DNS
- Lagrangian: Smooth Particule Hydrodynamics (SPH)
- Eulerian or Lagrangian obs.

Dasion

Data assimilation ideal case

Papadakis \& Mémin (2008) - Heitz et al. (2010)

$\mathcal{Y}(t, x)=\mathbb{H}(\mathbf{x}(t, x))+\varepsilon(t, x)$

$\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$
- DNS of 2D IHT at $R e=256$
- Resolution: 256×256

Data assimilation ideal case
Papadakis \& Mémin (2008) - Heitz et al. (2010)

$\partial_{t} I(t, x)+\mathbf{x} \cdot \nabla I(t, x)=\varepsilon(t, x)$

- Observation \rightarrow particle images,
thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity,
- DNS of 2D IHT at $R e=256$
- Resolution: 256×256 thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$

$$
\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0
$$

Dation

Data assimilation ideal case

Papadakis \& Mémin (2008) - Heitz et al. (2010)

$$
\hat{\mathbf{x}}(t, x)=\mathbf{x}(t, x)+\varepsilon(t, x)
$$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$

$\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0$
- DNS of 2D IHT at $R e=256$
- Resolution : 256×256

Data assimilation ideal case
Papadakis \& Mémin (2008) - Heitz et al. (2010)

$\partial_{t} I(t, x)+\mathbf{x} \cdot \nabla I(t, x)=0$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$

$\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0$
- DNS of 2D IHT at $R e=256$
- Resolution: 256×256

Data assimilation ingredients

Data assimilation ideal case

Papadakis \& Mémin (2008) - Heitz et al. (2010)

$$
\hat{\mathbf{x}}(t, x)=\mathbf{x}(t, x)+\varepsilon(t, x)
$$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$

$\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0$
- DNS of 2D IHT at $R e=256$
- Resolution: 256×256

Data assimilation ideal case
Papadakis \& Mémin (2008) - Heitz et al. (2010)

$\partial_{t} I(t, x)+\mathbf{x} \cdot \nabla I(t, x)=\varepsilon(t, x)$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$

$\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0$
- DNS of 2D IHT at $R e=256$
- Resolution : 256×256

Data assimilation tools

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications

Sequential assimilation
Variational assimilation

Data assimilation: the state estimation problem

Ingredients

- Observation model $\mathcal{Y}(t, x)=\mathbb{H}(\mathbf{x}(t, x))+\varepsilon(t, x)$
- Dynamical model $\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=\mathbf{q}(t, x)$
- Prior knowledge model $\mathbf{x}\left(t_{0}, x\right)=\mathbf{x}_{0}^{b}+\boldsymbol{\eta}(x)$
\rightarrow Random nature of observation, dynamic and knowledge errors described in term of pdf

Bayesian formulation

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathcal{Y})=\frac{p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathcal{Y})} \\
& p(\mathbf{x} \mid \mathcal{Y}) \propto p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})
\end{aligned}
$$

posterior \propto likelihood \times prior
analysis \propto observations \times knowledge

Prior distribution:

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation: the state estimation problem

Carassi et al.(2017)

Information: past
\rightarrow For the control?

Bayesian formulation

$$
p(\mathbf{x} \mid \mathcal{Y}) \propto p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})
$$

analysis \propto observations \times knowledge

Prior distribution:

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation: the state estimation problem

Carassi et al.(2017)

Information: past and present
\rightarrow Sequential processing providing discontinuous trajectories

Bayesian formulation

$$
p(\mathbf{x} \mid \mathcal{Y}) \propto p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})
$$

analysis \propto observations \times knowledge

Prior distribution:

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation: the state estimation problem

Carassi et al.(2017)

Information: past, present and future
\rightarrow Relevant for reconstruction or reanalysis and for model parameters estimation

Data assimilation: the state estimation problem

Computational problem

- Huge dimension of data and models prevent use of fully Bayesian approach
- Difficulty to define and transport the pdfs

Solution to overcome this issue

- Uncertainties of observations, model and prior are assumed Gaussian
- Pdfs completely described by first and second moments (i.e mean and covariance matrix)

Bayesian formulation

$$
p(\mathbf{x} \mid \mathcal{Y}) \propto p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})
$$

analysis \propto observations \times knowledge

Prior distribution:

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Sequential data assimilation: Kalman filter

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
\rightarrow Time dependent prior (mean, cov.)
\rightarrow Comput. cost. of K and P

Main algorithm

1. Forecast step

$$
\begin{aligned}
& \mathbf{x}_{k}^{\mathrm{f}}=\mathbf{M}_{k: k-1} \mathbf{x}_{k-1}^{\mathrm{a}}, \\
& \mathbf{P}_{k}^{\mathrm{f}}=\mathbf{M}_{k: k-1} \mathbf{P}_{k-1}^{\mathrm{a}} \mathbf{M}_{k: k-1}^{\mathrm{T}}+\mathbf{Q}_{k} .
\end{aligned}
$$

2. Analysis step

$$
\begin{aligned}
& \mathbf{K}_{k}=\mathbf{P}_{k}^{\mathrm{f}} \mathbf{H}_{k}^{\mathrm{T}}\left(\mathbf{H}_{k} \mathbf{P}_{k}^{\mathrm{f}} \mathbf{H}_{k}^{\mathrm{T}}+\mathbf{R}_{k}\right)^{-1}, \\
& \mathbf{x}_{k}^{\mathrm{a}}=\mathbf{x}_{k}^{\mathrm{f}}+\mathbf{K}_{k}\left(\mathbf{y}_{k}-\mathbf{H}_{k} \mathbf{x}_{k}^{\mathrm{f}}\right), \\
& \mathbf{P}_{k}^{\mathrm{a}}=\left(\mathbf{I}_{k}-\mathbf{K}_{k} \mathbf{H}_{k}\right) \mathbf{P}_{k}^{\mathrm{f}} .
\end{aligned}
$$

Sequential data assimilation: Kalman filter

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
\rightarrow Time dependent prior (mean, cov.)
\rightarrow Comput. cost. of K and P

Alternative approaches

- Extended Kalman Filter (EKF)
$\rightarrow H$ and M linearized
- Sub Optimal Filter (SOS)
\rightarrow Reduce comput. cost H

Sequential data assimilation: Kalman filter

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
\rightarrow Time dependent prior (mean, cov.)
\rightarrow Comput. cost. of K and P

Alternative approaches

- Extended Kalman Filter (EKF)
$\rightarrow H$ and M linearized
- Sub Optimal Filter (SOS)
\rightarrow Reduce comput. cost H
- Ensemble Kalman Filter (EnKF)
\rightarrow Empirical estimation of P
$\rightarrow H$ and M non linear

Sequential data assimilation: Kalman filter

From Boquet's lecture notes (2014-2015)

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
\rightarrow Time dependent prior (mean, cov.)
\rightarrow Comput. cost. of K and P

Alternative approaches

- Extended Kalman Filter (EKF)
$\rightarrow H$ and M linearized
- Sub Optimal Filter (SOS)
\rightarrow Reduce comput. cost H
- Particle Filter (PF)
$\rightarrow H$ and M non linear
\rightarrow Noises: non-Gaussian, biased, multimodal
\rightarrow Sampling issues due to high dimensions

Variational data assimilation: Classical 4DVar

Properties

- Obs. and dynamics non-linear
- Noises Gaussian, unbiased, white-in-time
\rightarrow Time independent prior (B)
\rightarrow Derivation of the adjoint model

Energy function

$$
J\left(\mathbf{x}_{0}\right)=\frac{1}{2}\left\|\mathbf{x}_{0}-\mathbf{x}_{0}^{b}\right\|_{B}^{2}+\frac{1}{2} \int_{t_{0}}^{t_{f}}\|\mathbb{H}(\mathbf{x})-\mathcal{Y}\|_{R}^{2} d t
$$

$$
\text { s.t. } \quad \partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x), u)=0
$$

- Computing the gradient of $J\left(\mathbf{x}_{0}\right)$ is very expensive!
- Deduced by solving the backwards adjoint equation
$-\partial_{t} \boldsymbol{\lambda}(t)+\left(\partial_{\mathbf{x}} \mathbb{M}\right)^{*} \boldsymbol{\lambda}(t)=\left(\partial_{\mathbf{x}} \mathbb{H}\right)^{*} \mathbf{R}^{-1}(\mathcal{Y}(t)-\mathbb{H}($
$\lambda\left(t_{f}\right)=0$

Variational data assimilation: Incremental 4DVar

Objective

Avoid local minima by solving a convex optimization problem under the constraint of the linearized dynamical model.

New minimization problem formulated by the convex cost function

$$
J\left(\delta \mathbf{x}_{0}^{(i))}=\frac{1}{2}\left\|\delta \mathbf{x}_{0}^{(i)}+\mathbf{x}_{0}^{(i)}-\mathbf{x}_{0}^{b}\right\|_{\mathbf{B}^{-1}}^{2}+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left\|\mathbf{H} \delta \mathbf{x}^{(i)}(t)+\mathbb{H}\left(\mathbf{x}_{t}^{(i)}\right)-\mathcal{Y}(t)\right\|_{\mathbf{R}^{-1}}^{2} d t\right.
$$

under the constraint of the linearized dynamics equations

$$
\begin{aligned}
& \partial_{t} \delta x^{(i)}+\partial_{x} \mathbb{M}\left(x^{(i)}\right) \cdot \delta x^{(i)}=0 \\
& \delta x_{0}^{(i)}=x_{0}^{b}-\mathbf{x}_{0}^{(i)}
\end{aligned}
$$

Variational data assimilation: Incremental 4DVar

Objective

Avoid local minima by solving a convex optimization problem under the constraint of the linearized dynamical model.

Variational data assimilation: 4DVar adjoint construction

Variational data assimilation: 4DVar adjoint construction

- Nonlinear dynamics

$$
\mathrm{x}_{0} \xrightarrow{I_{1}} \quad \cdots \quad \xrightarrow{I_{j}} \mathrm{x}_{j}=I_{j}\left(\mathrm{x}_{j-1}\right) \xrightarrow{I_{j+1}} \quad \cdots \quad \xrightarrow{I_{p}} \mathrm{x}_{p}
$$

- Tangent procedure

- Adjoint procedure

$$
\lambda_{0} \stackrel{I^{*}{ }_{1}}{\longleftarrow} \quad . . \quad \stackrel{I^{*}{ }_{j}}{\longleftrightarrow} \lambda_{j}=I_{j}^{*}\left(\mathrm{X}_{j-1}\right) \cdot \lambda_{j-1} \stackrel{I^{*}{ }_{j+1}}{\longleftrightarrow} \quad . . \quad \stackrel{I^{*}{ }_{p}}{\longleftrightarrow} \lambda_{p}
$$

Variational data assimilation: 4DVar adjoint construction

Variational data assimilation: Ensemble Variationnal EnVar

Properties

- Obs. and dynamics non-linear
- Noises Gaussian, unbiased, white-in-time
\rightarrow Sample based covariance (B)
\rightarrow Time dependent prior (B)
\rightarrow No derivation of the adjoint model

Energy function

$J\left(\mathbf{x}_{0}\right)=\frac{1}{2}\left\|\mathbf{x}_{0}-\mathbf{x}_{0}^{b}\right\|_{B}^{2}+\frac{1}{2} \int_{t_{0}}^{t_{f}}\|\mathbb{H}(\mathbf{x})-\mathcal{Y}\|_{R}^{2} d t$,
s.t. $\quad \partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x), u)=0$.

- Change cost function in terms of weighting vector
- Propagation of $B^{\frac{1}{2}}$ projected into observation space
\rightarrow Based on optimization theory
\rightarrow Fast operational implementation
\rightarrow Uncertainty sample-based or from optimization procedure
\rightarrow Localization and inflation

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications
 Sequential assimilation
 Variational assimilation

verview of significant achievements

Data assimilation publications: all fields vs fluid flow

Hayase (2015, Fluid Dyn. Res.)

IRMAR

Data assimilation: data-driven vs model-driven

Different modelling

Data assimilation: data-driven vs model-driven

Non exhaustive state of the art

Data assimilation: data-driven vs model-driven

Variational vs Filtering approaches

Exp Fluid Dynamics

Data Assimilation

Comp. Fluid Dynamics

Data assimilation: data-driven vs model-driven

3D vs 2D approaches
Schuster et al. (2018)

Yang et al. (2018) Chandramouli et al. (2018)
Chandramouli etal. (2018)
Cai et al. (2017) FlowFit Yegavian (2017) Meldi Poux (2017)

$$
\text { LKFT STB VIC+ } \quad \begin{aligned}
& \text { Rgbinson }(2015) \\
& \text { Mons et al. }(2015,2016)
\end{aligned}
$$

VIC Foures et al. (2014)
STB Gronskis et al. (2013)
IPR FTC-FTEE Zuzuki et al. (2012)
Derian et al. (2013) Colburn et al. (2011)
Héas et al. (2012) Papadakis et al. (2008)
Scarano et al. (2012) Cuzol et al. (2007)
Heitz et al. (2008) D'Adamo et al. (2007)
Elsinga et al. (2006) Perret et al. (2006) Ada (2006)
PIV Variationnal / Filtering
Druault et al. (2004)

Exp Fluid Dynamics

Data Assimilation

Comp. Fluid Dynamics

Data assimilation: data-driven vs model-driven

Focus

Overview of significant achievements

Data assimilation: data-driven vs model-driven

AIAA Journal
Vol. 42, No. 3, March 2004

Generation of Three-Dimensional Turbulent Inlet Conditions for Large-Eddy Simulation

P. Druault*
Université Pierre-et-Marie-Curie, 78210 Saint Cyr l'Ecole, France
S. Lardeau ${ }^{\dagger}$
Imperial College of Science, Technology, and Medicine, London, England SW7 2BY, United Kingdom
and

Université de Poitiers, 86962 Futuroscope Chasseneuil CEDEX, France

Overview of significant achievements

Data assimilation: data-driven vs model-driven

PHYSICS OF FLUIDS 20, 075107 (2008)

Turbulent inflow conditions for large-eddy simulation based on low-order empirical model

Laurent Perret, ${ }^{1, a)}$ Joël Delville, ${ }^{2}$ Rémi Manceau, ${ }^{2}$ and Jean-Paul Bonnet ${ }^{2}$
${ }^{1}$ Laboratoire de Mécanique des Fluides (LMF), UMR CNRS 6598, Ecole Centrale de Nantes,
1 rue de la Noë BP 92101, F-44321 Nantes Cedex 3, France
${ }^{2}$ Laboratoire d'Etudes Aérodynamiques (LEA), ENSMA, CNRS, CEAT, Université de Poitiers,
43, route de l'aérodrome, F-86036 Poitiers, France
(Received 30 October 2007; accepted 3 June 2008; published online 22 July 2008)

FIG. 1. DT-SPIV setup.

IRMAR

Overview of significant achievements

Data assimilation: data-driven vs model-driven

Hierarchy of hybrid unsteady-flow simulations integrating time-resolved PTV with DNS and their data-assimilation capabilities

Takao Suzuki ${ }^{1}$ and Fujio Yamamoto ${ }^{2}$

$$
\begin{aligned}
& \hat{\mathbf{u}}_{n+1}^{\mathrm{Hyb}}=\mathcal{N}\left(\mathbf{u}_{n}^{\mathrm{Hyb}}\right), \\
& \tilde{\mathbf{u}}_{n+1}^{\mathrm{Hyb}}=\hat{\mathbf{u}}_{n+1}^{\mathrm{Hyb}}+\mathbf{K}\left(\mathbf{u}_{n+1}^{\mathrm{PVV}}-\hat{\mathbf{u}}_{n+1}^{\mathrm{Hyb}}\right), \\
& \left(\mathbf{u}_{n+1}^{\mathrm{Hyb}}=\mathcal{P}\left(\tilde{\mathbf{u}}_{n+1}^{\mathrm{Hyb}}\right)\right),
\end{aligned}
$$

Types of algorithms
POD-Galerkin
(Suzuki 2014)
Conventional
(Suzuki
et al 2010)
Kalman filter
(Suzuki 2012)

Figure 5. Comparison of vorticity contours among the three hybrid algorithms at the same instant ($t u_{\mathrm{jet}} / h=11.9$). The jet is ejected from left to right. (a) POD-Galerkin projection. (b) Conventional hybrid algorithm. (c) Kalman-filtered algorithm. (d) Raw PTV. Contour levels: $-5.1 \leqslant \omega \leqslant 5.1$ with a $\Delta \omega=0.6$ increment for all.

Overview of significant achievements

Data assimilation: data-driven vs model-driven

Journal of Computational Physics 347 (2017) 207-234

A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows

CrossMark
M. Meldi ${ }^{*}$, A. Poux ${ }^{1}$

Fig. 17. Isocontours of the time averaged normal velocity $\overline{u_{y}}$ taken at the streamwise section $x=16 \Lambda$. A zoom around the wake region is performed. Results for (a) the DNS calculation, (b) the LES simulation and (c) the observer estimator are shown, respectively.

Overview of significant achievements

Data assimilation: data-driven vs model-driven

RESEARCH ARTICLE

Dense velocity reconstruction from tomographic PTV with material derivatives

Jan F. G. Schneiders ${ }^{1} \cdot$ Fulvio Scarano 1

$J=J_{u}+\alpha^{2} J_{D u}$,
where α is a weighting coefficient (Sect. 2.3.3), J_{u} is given by Eq. (7) and $J_{D u}$ is given by Eq. (8),
$J_{u}=\sum_{p}\left\|\boldsymbol{u}_{h}\left(\boldsymbol{x}_{p}\right)-\boldsymbol{u}_{m}\left(\boldsymbol{x}_{p}\right)\right\|^{2}$,
$J_{D u}=\sum_{p}\left\|\frac{D \boldsymbol{u}_{h}}{D t}\left(\boldsymbol{x}_{p}\right)-\frac{D \boldsymbol{u}_{m}}{D t}\left(\boldsymbol{x}_{p}\right)\right\|^{2}$,
where \boldsymbol{u}_{h} and $D u_{h} / D t$ are calculated from Eqs. (1) and (2) and are evaluated at the particle locations, \boldsymbol{x}_{p}, by linear interpolation from the computational grid. The cost function penalizes the difference between the PTV measurements and the velocity and material derivative at a single measurement time-instant calculated from the optimization variables. The optimization problem does not include time-integration of the vorticity transport equation.

Some applications

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications
Sequential assimilation
Variational assimilation

Wave in a rectangular flat bottom tank

Depth observations

Dynamical model

- Shallow water model

$$
\begin{gathered}
\partial_{t} H+\nabla \cdot(H \mathbf{v})=0 \\
\partial_{t}(H \mathbf{v})+\nabla \cdot(H \mathbf{v v})=-g H \eta+F
\end{gathered}
$$

Data assimilation approaches

- WEnKF (Combès et al., 2015, Fluid Dyn Res)
- Error model (obs. and dynamics)

Data assimilation results

- Reconstruct unobserved surface velocity

Wave in a rectangular flat bottom tank

Flow configuration

- $L x \times L y=250 \mathrm{~mm} \times 100 \mathrm{~mm}$
- Initial free surface height difference $h_{0}=1 \mathrm{~cm}$
- Observations every $10 \Delta t u_{0} / L_{x}$ leading to $S t_{\mathrm{obs}} \simeq 24$, that was rather high !

Simulation parameters

- Shallow water model
- $n_{x} \times n_{y}=222 \times 88$
- $\Delta t u_{0} / L_{x}=0.0042$

Assimilation parameters

- particle number $N=100$
- $\mathbf{x}_{\text {init }}=(0,0,0)$
- $\mathbf{X}_{0} \sim \mathcal{N}\left(\mathbf{x}_{\text {init }}, \mathbf{R}_{0}\right)$
- $\mathbf{W}_{t}^{f} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{t}\right)$
- $\mathbf{W}_{t}^{g} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{t}\right)$
- $\mathbf{R}_{0}\left(0.05 h_{0} ; 0.25 u_{0} ; r_{h}\right)$
- $\mathbf{R}_{t}\left(0.04 h_{0} ; 0.06 u_{0} ; r_{h}\right)$
- $\mathbf{Q}_{t}\left(0.013 h_{0}^{2} ;\right.$ diag.)
- localization2nćrar= B.6AR

Suddenly expanding flume

Simulation parameters

Flow configurations

- $L=10 \mathrm{~cm}$
- Inflow velocity and elevation oscillatory in phase at 1 Hz with $H_{\text {in }}=1 \mathrm{~cm}$ and $V_{\text {in }}=0.22 \mathrm{~m} / \mathrm{s}$
- $F r=U_{\mathrm{in}} / \sqrt{g H_{\mathrm{in}}}=0.7$
- Shallow water model
- $n_{x} \times n_{y}=200 \times 200$
- $\Delta t u_{0} / L=0.006$

Assimilation parameters

- particle number $N=100$
- $\mathbf{x}_{\text {init }}=(0,0,0)$
- $\mathbf{X}_{0} \sim \mathcal{N}\left(\mathbf{x}_{\text {init }}, \mathbf{R}_{0}\right)$
- $\mathbf{W}_{t}^{f} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{t}\right)$
- $\mathbf{W}_{t}^{g} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{t}\right)$
- $\mathbf{R}_{0}\left(0.05 h_{0} ; 0.25 u_{0} ; r_{h}\right)$
- $\mathbf{R}_{t}\left(0.04 h_{0} ; 0.06 u_{0} ; r_{h}\right)$
- $\mathbf{Q}_{t}\left(0.013 h_{0}^{2} ;\right.$ diag.)
- localization2nć́Re = BMAR

Some applications

Suddenly expanding flume

Non-uniform inlet velocity profile (with spatial complexity)

Suddenly expanding flume

Elevation error maps for singleObs and multiObs

Suddenly expanding flume

Velocity error maps for singleObs and multiObs

Cylinder wakes at $R e=112$

Data assimilation approaches

PIV observations

Dynamical model

- DNS with code Incompact3d (Laizet et al., 2010 JCP)
- Classical 4DVar approach from Gronskis et al.(2013)
- Inflow and initial condition control

Data assimilation results

- Reconstruct inflow and initial condition
- Reconstruct gap
- Influence of gap size \& obs. frequency
- Reconstruct pressure, Lift \& Drag

Some applications

Cylinder wakes at $R e=112$

4DVar approach from Gronskis et al.(2013)

Cylinder wakes at $R e=112$
Gap reconstruction

9.4

irstea

Cylinder wakes at $R e=112$

Influence of gap size

Method's accuracy was strongly related to the size of the gap.

Influence of obs. frequency

Error decreased with increasing observations frequency
$S t_{o b s}=f_{o b s} D / U$.

Cylinder wakes at $R e=112$

Pressure, Drag and Lift reconstruction via 4DVar
Gronskis et al.(2018, CFTL)

- Reconstruct unobserved pressure
- Lift and Drag via control volume

Cylinder wake at $R e=3900$

Cross PIV observations

Dynamical model

- Location Uncertainty Model Chandramouli et al. (2018, C. Fluids)

Data assimilation approaches

- Incremental 4DVar approach Chandramouli et al.(2018, submitted to JCP)
- Control inflow/outflow, initial condition and LES parameter
- Design 3D background from 2D cross PIV
Chandramouli et al.(2018, submitted to Exp. Fluids)

Data assimilation results

- Reconstruct 3D flow and model parameter

How to build the background in 3D?

Snapshot Optimization method (Chandramouliet al., 2018)

Some applications
How to build the background in 3D?

Snapshot Optimization method (Chandramouliet al., 2018)

irstea

LES subgrid scale model

Chandramouliet al. (2018, C. Fluids)
Models under Location Uncertainty (MULC) :

$$
\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{w}(\boldsymbol{x}, t)+\boldsymbol{\sigma}(\boldsymbol{x}, t) d \dot{\boldsymbol{B}}_{t}
$$

- $\boldsymbol{u}(\boldsymbol{x}, t)$ is the instanteneous velocity field
- $\boldsymbol{w}(\boldsymbol{x}, t)$ is the large scale drift
- $\boldsymbol{\sigma}(\boldsymbol{x}, t) d \dot{\boldsymbol{B}}_{t}$ stands for small scales

LES subgrid scale model

Chandramouliet al. (2018, C. Fluids)

NS formulation as derived in Memin [2014] :
Mass conservation :

$$
\begin{gather*}
d_{t} \rho_{t}+\nabla \cdot(\rho \tilde{\boldsymbol{w}}) d t+\nabla \rho \cdot \boldsymbol{\sigma} d \boldsymbol{B}_{t}=\frac{1}{2} \boldsymbol{\nabla} \cdot(\boldsymbol{a} \nabla q) d t, \tag{6}\\
\tilde{\mathbf{w}}=\boldsymbol{w}-\frac{1}{2} \boldsymbol{\nabla} \cdot \boldsymbol{a} \tag{7}
\end{gather*}
$$

For an incompressible fluid:

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot\left(\sigma d \boldsymbol{B}_{t}\right)=0, \quad \nabla \cdot \tilde{\boldsymbol{w}}=0 \tag{8}
\end{equation*}
$$

Momentum conservation :

$$
\left(\partial_{t} \boldsymbol{w}+\boldsymbol{w} \nabla^{T}\left(\boldsymbol{w}-\frac{1}{2} \boldsymbol{\nabla} \cdot \boldsymbol{a}\right)-\frac{1}{2} \sum_{i j} \partial_{x_{i}}\left(a_{i j} \partial_{x_{j}} \boldsymbol{w}\right)\right) \rho=\rho \boldsymbol{g}-\boldsymbol{\nabla} p+\mu \Delta \boldsymbol{w}
$$

4DVar with LES subgrid scale model

3D flow reconstruction

4DVar with LES subgrid scale model

Subgrid scale parameter estimation

3D Particle Tracking Velocimetry: En4DVar-PTV

PIV observations

Dynamical model

- 2nd order polynome
„Shake-the-Box"

Schanz et al. (2016,EIF)

Data assimilation approaches

- En 4DVar PTV approach from Yang et al. (2018, CFTL)

Data assimilation results

- Better particle position and velocity

Sumary

- Data assimilation is a powerful technique to combine observations and models (sequential or variational)
\rightarrow for prediction, filtering or smoothing
- Data driven vs model driven (d vs m): when observations available \ll data to describe the system
\rightarrow model and regularization are paramount
- History of use is the search for suitable approximation that, even sub-optimal, works with non-linear, non Gaussian and high dimensional settings

Outlooks

- Dynamics model (large scale, uncertainties)
- From pseudo-observations (velocities) to observations (images)
- Control BC (inflow, outflow, ...) and model parameters (combined with IA)

