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Confronting EFD and CFD is inherent of fluid mechanics
approaches

TomoPIV (Irstea)

Re 2 500

Experiments

I LDV as a reference

I HWA → very good

I PIV → good

DNS (Dairy et al.,2015)
Re 10 000

Numerical simulations

I DNS as a reference
→ numerical wind tunnel

I A priori parameter calibration

I A posteriori simulation
validation



EFD and CFD limitations

TomoPIV (Irstea)

Re 2 500

Experiments

I HWA and LDV → pointwise

I PIV → large scale

I TomoPIV → very large scale

⇒ sparse data

DNS (Dairy et al.,2015)
Re 10 000

Numerical simulations

I Initial conditions

I Boundary conditions

I Turbulence model and
parameters

⇒ non ”realistic” simulations



Coupling EFD and CFD with data assimilation

TomoPIV (Irstea)

Re 2 500 DNS (Dairy et al.,2015)
Re 10 000

Objective

I Estimation of the unknown true state of interest x(t, x)

I Recover as accurately as possible the state of the fluid flow using all
available information

Question: how to do that ?



Data assimilation ingredients
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Data assimilation tools

Overview of significant achievements

Some applications
Sequential assimilation
Variational assimilation



Data assimilation ingredients

Data assimilation ingredients

TomoPIV (Irstea)

Experiments

I Observation model

Y(t, x) = H(x(t, x)) + ε(t, x)

DNS (Dairy et al.,2015)

Numerical model

I Dynamical model

∂tx(t, x) +M(x(t, x)) = q(t, x)

I Prior knowledge model

x(t0, x) = xb0 + η(x)



Data assimilation ingredients

Data and dynamics dimensions

TomoPIV (Irstea)
DNS (Dairy et al.,2015)

Data and model resolution: d vs m

I Geosciences d << m

I PIV d ≤ m or d << m

I Model resolution: ROM vs DNS
I Laboratory vs Industrial processes
I 2D vs 3D
I Reynolds



Data assimilation ingredients

Data assimilation: observation and dynamics models
TomoPIV (Irstea)

Y(t, x) = H(x(t, x)) + ε(t, x)

I Pseudo observation → velocity,
vorticity, lagrangian
acceleration, thus
Y(t, x) = x̂(t, x) and H = I

I Observation → images of
particles, scalar (smoke, gaz,
temperature), thus
Y(t, x) = I (t, x) and H can be
nonlinear

I Eulerian or Lagrangian obs.

DNS (Dairy et al.,2015)

∂tx(t, x)+M(x(t, x)) = q(t, x)

I Eulerian: ROM, Vortex
particle, Lattice Boltzman,
RANS, LES, DNS

I Lagrangian: Smooth Particule
Hydrodynamics (SPH)



Data assimilation ingredients

Data assimilation ideal case
Papadakis & Mémin (2008) - Heitz et al. (2010)
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Y(t, x) = H(x(t, x)) + ε(t, x)

I Observation → particle images,
thus Y(t, x) = I (t, x) and H linear

I Pseudo observation → velocity,
thus Y(t, x) = x̂(t, x) and H = I

∂tx(t, x) + M(x(t, x)) = 0

I DNS of 2D IHT at Re = 256

I Resolution : 256× 256



Data assimilation ingredients

Data assimilation ideal case
Papadakis & Mémin (2008) - Heitz et al. (2010)

∂t I (t, x) + x · ∇I (t, x) = ε(t, x)
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∂tx(t, x) + M(x(t, x)) = 0

I DNS of 2D IHT at Re = 256

I Resolution : 256× 256
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Data assimilation ideal case
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Data assimilation ingredients

Data assimilation ideal case
Papadakis & Mémin (2008) - Heitz et al. (2010)

0.01 0.1

0.01 0.1

∂t I (t, x) + x · ∇I (t, x) = 0

I Observation → particle images,
thus Y(t, x) = I (t, x) and H linear

I Pseudo observation → velocity,
thus Y(t, x) = x̂(t, x) and H = I

∂tx(t, x) + M(x(t, x)) = 0

I DNS of 2D IHT at Re = 256

I Resolution : 256× 256
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Data assimilation ideal case
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Data assimilation ingredients

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)
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Data assimilation tools

Data assimilation: the state estimation problem

Ingredients

I Observation model

Y(t, x) = H(x(t, x)) + ε(t, x)

I Dynamical model

∂tx(t, x) + M(x(t, x)) = q(t, x)

I Prior knowledge model

x(t0, x) = xb0 + η(x)

→ Random nature of observation,
dynamic and knowledge errors
described in term of pdf

Bayesian formulation

p(x|Y) =
p(Y |x)p(x)

p(Y)

p(x|Y) ∝ p(Y |x)p(x)

posterior ∝ likelihood × prior

analysis ∝ observations × knowledge

Prior distribution:

I Prevents from over-fitting

I Introduce past information

I Good prior not straightforward



Data assimilation tools

Data assimilation: the state estimation problem

Carassi et al.(2017)

Information: past

→ For the control?

Bayesian formulation

p(x|Y) ∝ p(Y |x)p(x)

analysis ∝ observations × knowledge

Prior distribution:

I Prevents from over-fitting

I Introduce past information

I Good prior not straightforward



Data assimilation tools

Data assimilation: the state estimation problem

Carassi et al.(2017)

Information: past and present

→ Sequential processing providing
discontinuous trajectories

Bayesian formulation

p(x|Y) ∝ p(Y |x)p(x)

analysis ∝ observations × knowledge

Prior distribution:

I Prevents from over-fitting

I Introduce past information

I Good prior not straightforward



Data assimilation tools

Data assimilation: the state estimation problem

Carassi et al.(2017)

Information: past, present and future

→ Relevant for reconstruction or
reanalysis and for model parameters

estimation

Bayesian formulation

p(x|Y) ∝ p(Y |x)p(x)

analysis ∝ observations × knowledge

Prior distribution:

I Prevents from over-fitting

I Introduce past information

I Good prior not straightforward



Data assimilation tools

Data assimilation: the state estimation problem

Computational problem

I Huge dimension of data and
models prevent use of fully
Bayesian approach

I Difficulty to define and transport
the pdfs

Solution to overcome this issue

I Uncertainties of observations,
model and prior are assumed
Gaussian

I Pdfs completely described by first
and second moments (i.e mean
and covariance matrix)

Bayesian formulation

p(x|Y) ∝ p(Y |x)p(x)

analysis ∝ observations × knowledge

Prior distribution:

I Prevents from over-fitting

I Introduce past information

I Good prior not straightforward



Data assimilation tools

Sequential data assimilation: Kalman filter

Properties

I Obs. and dynamics linear

I Noises Gaussian, unbiased,
white-in-time

→ Time dependent prior (mean, cov.)

→ Comput. cost. of K and P

Main algorithm

1. Forecast step

2. Analysis step



Data assimilation tools

Sequential data assimilation: Kalman filter

Properties

I Obs. and dynamics linear

I Noises Gaussian, unbiased,
white-in-time

→ Time dependent prior (mean, cov.)

→ Comput. cost. of K and P

Alternative approaches

I Extended Kalman Filter (EKF)

→ H and M linearized

I Sub Optimal Filter (SOS)

→ Reduce comput. cost H



Data assimilation tools

Sequential data assimilation: Kalman filter

Properties

I Obs. and dynamics linear

I Noises Gaussian, unbiased,
white-in-time

→ Time dependent prior (mean, cov.)

→ Comput. cost. of K and P

Alternative approaches

I Extended Kalman Filter (EKF)

→ H and M linearized

I Sub Optimal Filter (SOS)

→ Reduce comput. cost H

I Ensemble Kalman Filter (EnKF)

→ Empirical estimation of P
→ H and M non linear



Data assimilation tools

Sequential data assimilation: Kalman filter

From Boquet’s lecture notes (2014-2015)

Properties

I Obs. and dynamics linear

I Noises Gaussian, unbiased,
white-in-time

→ Time dependent prior (mean, cov.)

→ Comput. cost. of K and P

Alternative approaches

I Extended Kalman Filter (EKF)

→ H and M linearized

I Sub Optimal Filter (SOS)

→ Reduce comput. cost H

I Particle Filter (PF)

→ H and M non linear
→ Noises: non-Gaussian, biased,

multimodal
→ Sampling issues due to high

dimensions



Data assimilation tools

Variational data assimilation: Classical 4DVar

Properties

I Obs. and dynamics non-linear

I Noises Gaussian, unbiased,
white-in-time

→ Time independent prior (B)

→ Derivation of the adjoint model

Energy function

J(x0) = 1
2
‖x0 − xb0‖2

B +
1

2

∫ tf

t0

‖H(x)−Y‖2
Rdt,

s.t. ∂tx(t, x) + M(x(t, x), u) = 0.

I Computing the gradient of J(x0) is
very expensive!

I Deduced by solving the backwards
adjoint equation

−∂tλ(t) + (∂xM)∗λ(t) = (∂xH)∗R−1(Y(t)−H(x(t)))

λ(tf ) = 0



Data assimilation tools

Variational data assimilation: Incremental 4DVar

Objective

Avoid local minima by solving a
convex optimization problem
under the constraint of the
linearized dynamical model.

New minimization problem formulated by the convex cost function

J(δx(i))
0 =

1

2
‖δx(i)

0 + x(i)
0 − xb0‖2

B−1 +
1

2

∫ tf

t0

‖Hδx(i)(t) + H(x(i)
t )−Y(t)‖2

R−1dt

under the constraint of the linearized dynamics equations

∂tδx
(i) + ∂xM(x(i)).δx(i) = 0

δx
(i)
0 = xb0 − x

(i)
0



Data assimilation tools

Variational data assimilation: Incremental 4DVar

Objective

Avoid local minima by solving a
convex optimization problem
under the constraint of the
linearized dynamical model.



Data assimilation tools

Variational data assimilation: 4DVar adjoint construction



Data assimilation tools

Variational data assimilation: 4DVar adjoint construction

I Nonlinear dynamics

I Tangent procedure

I Adjoint procedure



Data assimilation tools

Variational data assimilation: 4DVar adjoint construction



Data assimilation tools

Variational data assimilation: Ensemble Variationnal EnVar

Properties

I Obs. and dynamics non-linear

I Noises Gaussian, unbiased,
white-in-time

→ Sample based covariance (B)

→ Time dependent prior (B)

→ No derivation of the adjoint
model

Energy function

J(x0) = 1
2
‖x0 − xb0‖2

B +
1

2

∫ tf

t0

‖H(x)−Y‖2
Rdt,

s.t. ∂tx(t, x) + M(x(t, x), u) = 0.

I Change cost function in terms of
weighting vector

I Propagation of B
1
2 projected into

observation space

→ Based on optimization theory

→ Fast operational implementation

→ Uncertainty sample-based or from
optimization procedure

→ Localization and inflation
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Overview of significant achievements

Data assimilation publications: all fields vs fluid flow

Hayase (2015, Fluid Dyn. Res.)



Overview of significant achievements

Data assimilation: data-driven vs model-driven

Different modelling



Overview of significant achievements

Data assimilation: data-driven vs model-driven

Non exhaustive state of the art



Overview of significant achievements

Data assimilation: data-driven vs model-driven

Variational vs Filtering approaches



Overview of significant achievements

Data assimilation: data-driven vs model-driven

3D vs 2D approaches



Overview of significant achievements

Data assimilation: data-driven vs model-driven

Focus
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Data assimilation: data-driven vs model-driven
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Data assimilation: data-driven vs model-driven
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Data assimilation: data-driven vs model-driven
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Data assimilation: data-driven vs model-driven



Some applications

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications
Sequential assimilation
Variational assimilation



Some applications

Wave in a rectangular flat bottom tank

Depth observations

Dynamical model

I Shallow water model

∂tH + ∇ · (Hv) = 0.
∂t(Hv) + ∇ · (Hvv) = −gHη + F .

Data assimilation approaches

I WEnKF (Combès et al., 2015,

Fluid Dyn Res)

I Error model (obs. and dynamics)

Data assimilation results

I Reconstruct unobserved surface
velocity



Some applications

Wave in a rectangular flat bottom tank

Flow configuration

I Lx × Ly = 250 mm× 100 mm

I Initial free surface height
difference h0 = 1 cm

I Observations every 10∆t u0/Lx
leading to Stobs ' 24, that was
rather high !

Simulation parameters

I Shallow water model

I nx × ny = 222× 88

I ∆t u0/Lx = 0.0042

Assimilation parameters

I particle number N = 100

I xinit = (0, 0, 0)

I X0 ∼ N (xinit,R0)

I Wf
t ∼ N (0,Rt)

I Wg
t ∼ N (0,Qt)

I R0 (0.05 h0; 0.25 u0; rh)

I Rt (0.04 h0; 0.06 u0; rh)

I Qt (0.013 h2
0; diag .)

I localization hcorrel = 0.6h0



Some applications

Suddenly expanding flume

L

L

2L

L

L

2L

Flow configurations

I L = 10 cm

I Inflow velocity and elevation
oscillatory in phase at 1 Hz with
Hin = 1 cm and Vin = 0.22 m/s

I Fr = Uin/
√
g Hin = 0.7

Simulation parameters

I Shallow water model

I nx × ny = 200× 200

I ∆t u0/L = 0.006

Assimilation parameters

I particle number N = 100

I xinit = (0, 0, 0)

I X0 ∼ N (xinit,R0)

I Wf
t ∼ N (0,Rt)

I Wg
t ∼ N (0,Qt)

I R0 (0.05 h0; 0.25 u0; rh)

I Rt (0.04 h0; 0.06 u0; rh)

I Qt (0.013 h2
0; diag .)

I localization hcorrel = 0.6h0



Some applications

Suddenly expanding flume

Non-uniform inlet velocity profile (with spatial complexity)
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Some applications

Suddenly expanding flume

Elevation error maps for singleObs and multiObs
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Some applications

Suddenly expanding flume

Velocity error maps for singleObs and multiObs
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Some applications

Cylinder wakes at Re=112

PIV observations

Dynamical model

I DNS with code Incompact3d
(Laizet et al., 2010 JCP)

Data assimilation approaches

I Classical 4DVar approach from
Gronskis et al.(2013)

I Inflow and initial condition control

Data assimilation results

I Reconstruct inflow and initial
condition

I Reconstruct gap

I Influence of gap size & obs.
frequency

I Reconstruct pressure, Lift & Drag



Some applications

Cylinder wakes at Re=112

4DVar approach from Gronskis et al.(2013)

x0 xin
DNS grid

Gap region ΩG

PIV grid, dxobs = 3dx

Control domain ΩC , fine grid

Assimilation domain ΩA, coarse grid

Weighted average to give ω in ΩA



Some applications

Cylinder wakes at Re=112

Initial condition
uobsx (x, t0) uobsy (x, t0)

Initial condition in ΩG (IC)

1. Uniform stagnant flow

2. Velocity interpolation

Inflow condition
uk=0
x (xin, t) uk=0

y (xin, t)

I From PIV sequence with
Taylor’s hypothesis



Some applications

Cylinder wakes at Re=112

Gap reconstruction

tU/D 0 3 6.2 9.4
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Some applications

Cylinder wakes at Re=112

Influence of gap size

IC=1, fobsD/U=6.2
Method’s accuracy was strongly
related to the size of the gap.

Influence of obs. frequency

Lx/D=4, IC=1
Error decreased with increasing
observations frequency
Stobs = fobs D/U.



Some applications

Cylinder wakes at Re=112

Pressure, Drag and Lift reconstruction via 4DVar

Gronskis et al.(2018, CFTL)

U
V

P
re

s.

I Reconstruct unobserved pressure

I Lift and Drag via control volume



Some applications

Cylinder wake at Re=3900

Cross PIV observations

Dynamical model

I Location Uncertainty Model
Chandramouli et al.

(2018, C. Fluids)

Data assimilation approaches

I Incremental 4DVar approach
Chandramouli et al.(2018,
submitted to JCP)

I Control inflow/outflow, initial
condition and LES parameter

I Design 3D background from 2D
cross PIV
Chandramouli et al.(2018,
submitted to Exp. Fluids)

Data assimilation results

I Reconstruct 3D flow and model
parameter



Some applications

How to build the background in 3D?

Snapshot Optimization method (Chandramouliet al., 2018)

I Flow with one direction of
homegeneity



Some applications

How to build the background in 3D?

Snapshot Optimization method (Chandramouliet al., 2018)



Some applications

LES subgrid scale model

Chandramouliet al. (2018, C. Fluids)



Some applications

LES subgrid scale model

Chandramouliet al. (2018, C. Fluids)



Some applications

4DVar with LES subgrid scale model

3D flow reconstruction



Some applications

4DVar with LES subgrid scale model

Subgrid scale parameter estimation



Some applications

3D Particle Tracking Velocimetry: En4DVar-PTV

PIV observations

Dynamical model

I 2nd order polynome

Schanz et al. (2016,EIF)

Data assimilation approaches

I En 4DVar PTV approach from
Yang et al.(2018, CFTL)

Data assimilation results

I Better particle position and
velocity



Some applications

Sumary

I Data assimilation is a powerful technique to combine
observations and models (sequential or variational)
→ for prediction, filtering or smoothing

I Data driven vs model driven (d vs m): when observations
available << data to describe the system
→ model and regularization are paramount

I History of use is the search for suitable approximation that,
even sub-optimal, works with non-linear, non Gaussian and
high dimensional settings

Outlooks

I Dynamics model (large scale, uncertainties)

I From pseudo-observations (velocities) to observations
(images)

I Control BC (inflow, outflow, ...) and model parameters
(combined with IA)
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