Assimilation de données pour la reconstruction d'écoulements

Dominique Heitz

Fluminance team member, Irstea/IRMAR/Inria, Rennes, France ACTA team leader, Irstea, Rennes, France

Collaborators: A. Gronskis, B. Combès, C. Robinson, P. Chandramouli, S. Laizet, Y. Yang, V. Resseguier, E. Mémin

AG MIA/NUMM, 21-23 mai, 2019, Massy-Palaiseau & Jouy-en-Josas, France

Confronting EFD and CFD is inherent of fluid mechanics approaches

TomoPIV (Irstea)

Experiments

- LDV as a reference
- $\blacktriangleright \ \mathsf{HWA} \to \mathsf{very} \ \mathsf{good}$
- $\blacktriangleright \mathsf{PIV} \to \mathsf{good}$

DNS (Dairy *et al.*,2015) Re 10 000

Numerical simulations

- DNS as a reference
 numerical wind tunnel
- A priori parameter calibration
- A posteriori simulation validation

EFD and CFD limitations

TomoPIV (Irstea)

Experiments

- \blacktriangleright HWA and LDV \rightarrow pointwise
- $\blacktriangleright \text{ PIV} \rightarrow \text{large scale}$
- TomoPIV \rightarrow very large scale

 \Rightarrow sparse data

DNS (Dairy *et al.*,2015) Re 10 000

Numerical simulations

- Initial conditions
- Boundary conditions
- Turbulence model and parameters
 - \Rightarrow non "realistic" simulations

Coupling EFD and CFD with data assimilation

DNS (Dairy *et al.*,2015) Re 10 000

Objective

- Estimation of the unknown true state of interest x(t, x)
- Recover as accurately as possible the state of the fluid flow using all available information

Question: how to do that ?

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications Sequential assimilation Variational assimilation

Data assimilation ingredients

TomoPIV (Irstea)

Experiments

• Observation model $\mathcal{Y}(t,x) = \mathbb{H}(\mathbf{x}(t,x)) + \varepsilon(t,x)$ DNS (Dairy et al.,2015)

Numerical model

- ► Dynamical model $\partial_t \mathbf{x}(t, x) + \mathbb{M}(\mathbf{x}(t, x)) = \mathbf{q}(t, x)$
- Prior knowledge model
 x(t₀, x) = x₀^b + η(x)

Data and dynamics dimensions

DNS (Dairy et al.,2015)

Data and model resolution: d vs m

- ▶ Geosciences *d* << *m*
- ▶ PIV $d \le m$ or d << m
 - Model resolution: ROM vs DNS
 - Laboratory vs Industrial processes
 - 2D vs 3D
 - Reynolds

Data assimilation: observation and dynamics models

TomoPIV (Irstea)

$oldsymbol{\mathcal{Y}}(t,x) = \mathbb{H}(oldsymbol{x}(t,x)) + oldsymbol{arepsilon}(t,x)$

- Pseudo observation → velocity, vorticity, lagrangian acceleration, thus
 𝔥(t,x) = 𝔅(t,x) and 𝔃 = 𝔅
- Observation \rightarrow images of particles, scalar (smoke, gaz, temperature), thus $\mathcal{Y}(t, x) = I(t, x)$ and \mathbb{H} can be nonlinear
- Eulerian or Lagrangian obs.

DNS (Dairy et al.,2015)

 $\partial_t \mathbf{x}(t,x) + \mathbb{M}(\mathbf{x}(t,x)) = \mathbf{q}(t,x)$

- Eulerian: ROM, Vortex particle, Lattice Boltzman, RANS, LES, DNS
- Lagrangian: Smooth Particule Hydrodynamics (SPH)

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\mathcal{Y}(t,x) = \mathbb{H}(\mathbf{x}(t,x)) + \varepsilon(t,x)$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t,x) = I(t,x)$ and \mathbb{H} linear
- Pseudo observation → velocity, thus 𝔥(t, x) = 𝔅(t, x) and 𝔃 = 𝔅

- ▶ DNS of 2D IHT at Re = 256
- Resolution : 256×256

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

120

 $\partial_t I(t,x) + \mathbf{x} \cdot \nabla I(t,x) = \varepsilon(t,x)$

- Observation → particle images, thus 𝔥(t,x) = 𝒯(t,x) and 𝔄 linear
- ▶ Pseudo observation → velocity, thus $\mathcal{Y}(t,x) = \hat{\mathbf{x}}(t,x)$ and $\mathbb{H} = \mathbb{I}$

 $\partial_t \mathbf{x}(t,x) + \mathbb{M}(\mathbf{x}(t,x)) = 0$

- ▶ DNS of 2D IHT at Re = 256
- Resolution : 256 × 256

0.6

Lo/Uc

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\hat{\mathbf{x}}(t,x) = \mathbf{x}(t,x) + \boldsymbol{\varepsilon}(t,x)$

- Observation → particle images, thus 𝒱(t,x) = 𝒯(t,x) and 𝖽 linear
- ▶ Pseudo observation → velocity, thus 𝔥(t,x) = 𝔅(t,x) and 𝔃 = 𝔅

- DNS of 2D IHT at Re = 256
- Resolution : 256×256

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\partial_t I(t,x) + \mathbf{x} \cdot \nabla I(t,x) = 0$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t,x) = I(t,x)$ and $\mathbb H$ linear
- Pseudo observation → velocity, thus 𝔥(t, x) = 𝔅(t, x) and 𝔃 = 𝔅

- ▶ DNS of 2D IHT at Re = 256
- Resolution : 256 × 256

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\hat{\mathbf{x}}(t,x) = \mathbf{x}(t,x) + \varepsilon(t,x)$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t,x) = I(t,x)$ and $\mathbb H$ linear
- Pseudo observation → velocity, thus 𝔥(t,x) = 𝔅(t,x) and 𝔃 = 𝔅

- ▶ DNS of 2D IHT at Re = 256
- Resolution : 256 × 256

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\partial_t l(t,x) + \mathbf{x} \cdot \nabla l(t,x) = \varepsilon(t,x)$

- Observation → particle images, thus 𝔥(t,x) = 𝒯(t,x) and 𝔄 linear
- ▶ Pseudo observation → velocity, thus $\mathbf{\mathcal{Y}}(t,x) = \hat{\mathbf{x}}(t,x)$ and $\mathbb{H} = \mathbb{I}$

 $\partial_t \mathbf{x}(t, x) + \mathbb{M}(\mathbf{x}(t, x)) = 0$

- DNS of 2D IHT at Re = 256
- Resolution : 256×256

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications Sequential assimilation Variational assimilatior

Data assimilation: the state estimation problem

Ingredients

- ► Observation model $\mathcal{Y}(t,x) = \mathbb{H}(\mathbf{x}(t,x)) + \varepsilon(t,x)$
- ► Dynamical model $\partial_t \mathbf{x}(t, x) + \mathbb{M}(\mathbf{x}(t, x)) = \mathbf{q}(t, x)$
- Prior knowledge model $\mathbf{x}(t_0, x) = \mathbf{x}_0^b + \boldsymbol{\eta}(x)$

Bayesian formulation

$$p(\mathbf{x}|\mathcal{Y}) = rac{p(\mathcal{Y}|\mathbf{x})p(\mathbf{x})}{p(\mathcal{Y})}$$
 $p(\mathbf{x}|\mathcal{Y}) \propto p(\mathcal{Y}|\mathbf{x})p(\mathbf{x})$

posterior \propto likelihood \times prior

analysis \propto observations \times knowledge

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation: the state estimation problem

Bayesian formulation

 $p(\mathbf{x}|\mathcal{Y}) \propto p(\mathcal{Y}|\mathbf{x})p(\mathbf{x})$

analysis \propto observations \times knowledge

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation: the state estimation problem

Information: past and present

 \rightarrow Sequential processing providing discontinuous trajectories

Bayesian formulation

 $p(\mathbf{x}|\boldsymbol{\mathcal{Y}}) \propto p(\boldsymbol{\mathcal{Y}}|\mathbf{x}) p(\mathbf{x})$

analysis \propto observations \times knowledge

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation: the state estimation problem

Information: past, present and future \rightarrow Relevant for reconstruction or reanalysis and for model parameters estimation

Bayesian formulation

 $p(\mathbf{x}|\mathcal{Y}) \propto p(\mathcal{Y}|\mathbf{x}) \rho(\mathbf{x})$

analysis \propto observations \times knowledge

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation: the state estimation problem

Computational problem

- Huge dimension of data and models prevent use of fully Bayesian approach
- Difficulty to define and transport the pdfs

Solution to overcome this issue

- Uncertainties of observations, model and prior are assumed Gaussian
- Pdfs completely described by first and second moments (i.e mean and covariance matrix)

Bayesian formulation

 $p(\mathbf{x}|\mathcal{Y}) \propto p(\mathcal{Y}|\mathbf{x})p(\mathbf{x})$

analysis \propto observations \times knowledge

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Sequential data assimilation: Kalman filter

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
- \rightarrow Time dependent prior (mean, cov.)
- ightarrow Comput. cost. of K and P

Main algorithm

- 1. Forecast step $\mathbf{x}_k^{\mathrm{f}} = \mathbf{M}_{k:k-1}\mathbf{x}_{k-1}^{\mathrm{a}},$
 - $\mathbf{P}_k^{\mathrm{f}} = \mathbf{M}_{k:k-1} \mathbf{P}_{k-1}^{\mathrm{a}} \mathbf{M}_{k:k-1}^{\mathrm{T}} + \mathbf{Q}_k.$
- 2. Analysis step
 $$\begin{split} \mathbf{K}_k &= \mathbf{P}_k^{\mathrm{f}} \mathbf{H}_k^{\mathrm{T}} (\mathbf{H}_k \mathbf{P}_k^{\mathrm{f}} \mathbf{H}_k^{\mathrm{T}} + \mathbf{R}_k)^{-1}, \\ \mathbf{x}_k^{\mathrm{a}} &= \mathbf{x}_k^{\mathrm{f}} + \mathbf{K}_k (\mathbf{y}_k - \mathbf{H}_k \mathbf{x}_k^{\mathrm{f}}), \\ \mathbf{P}_k^{\mathrm{a}} &= (\mathbf{I}_k - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_k^{\mathrm{f}}. \end{split}$$

Sequential data assimilation: Kalman filter

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
- \rightarrow Time dependent prior (mean, cov.)
- \rightarrow Comput. cost. of K and P

Alternative approaches

- Extended Kalman Filter (EKF)
 - \rightarrow *H* and *M* linearized
- Sub Optimal Filter (SOS)
 - \rightarrow Reduce comput. cost H

Sequential data assimilation: Kalman filter

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
- \rightarrow Time dependent prior (mean, cov.)
- ightarrow Comput. cost. of K and P

Alternative approaches

- Extended Kalman Filter (EKF)
 - \rightarrow *H* and *M* linearized
- Sub Optimal Filter (SOS)
 - \rightarrow Reduce comput. cost H
- Ensemble Kalman Filter (EnKF)
 - \rightarrow Empirical estimation of P
 - \rightarrow *H* and *M* non linear

Sequential data assimilation: Kalman filter

From Boquet's lecture notes (2014-2015)

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
- \rightarrow Time dependent prior (mean, cov.)
- \rightarrow Comput. cost. of K and P

Alternative approaches

- Extended Kalman Filter (EKF)
 - \rightarrow *H* and *M* linearized
- Sub Optimal Filter (SOS)
 - ightarrow Reduce comput. cost H
- Particle Filter (PF)
 - \rightarrow *H* and *M* non linear
 - \rightarrow Noises: non-Gaussian, biased, multimodal
 - $\label{eq:sampling} \rightarrow \mbox{ Sampling issues due to high dimensions}$

Variational data assimilation: Classical 4DVar

Properties

- Obs. and dynamics non-linear
- Noises Gaussian, unbiased, white-in-time
- \rightarrow Time independent prior (B)
- ightarrow Derivation of the adjoint model

Energy function

$$\begin{split} J(\mathbf{x}_0) &= \frac{1}{2} \|\mathbf{x}_0 - \mathbf{x}_0^b\|_B^2 + \frac{1}{2} \int_{t_0}^{t_f} \|\mathbb{H}(\mathbf{x}) - \boldsymbol{\mathcal{Y}}\|_R^2 dt, \\ \text{s.t.} \quad \partial_t \mathbf{x}(t, x) + \mathbb{M}(\mathbf{x}(t, x), u) = 0. \end{split}$$

- Computing the gradient of J(x₀) is very expensive!
- Deduced by solving the backwards adjoint equation

 $egin{aligned} &-\partial_t \lambda(t) + (\partial_{\mathsf{X}} \mathbb{M})^* \lambda(t) = (\partial_{\mathsf{X}} \mathbb{H})^* \mathsf{R}^{-1}(\mathcal{Y}(t) - \mathbb{H}(\lambda(t_f) = 0)) \end{aligned}$

Data assimilation tools

Variational data assimilation: Incremental 4DVar

Objective

Avoid local minima by solving a convex optimization problem under the constraint of the linearized dynamical model.

$$J(\delta \mathbf{x}_{0}^{(i)}) = \frac{1}{2} \|\delta \mathbf{x}_{0}^{(i)} + \mathbf{x}_{0}^{(i)} - \mathbf{x}_{0}^{b}\|_{\mathbf{B}^{-1}}^{2} + \frac{1}{2} \int_{t_{0}}^{t_{f}} \|\mathbf{H} \delta \mathbf{x}^{(i)}(t) + \mathbb{H}(\mathbf{x}_{t}^{(i)}) - \mathcal{Y}(t)\|_{\mathbf{R}^{-1}}^{2} dt$$

under the constraint of the linearized dynamics equations

$$\partial_t \delta \mathbf{x}^{(i)} + \partial_\mathbf{x} \mathbb{M}(\mathbf{x}^{(i)}) \cdot \delta \mathbf{x}^{(i)} = 0$$
$$\delta \mathbf{x}_0^{(i)} = \mathbf{x}_0^b - \mathbf{x}_0^{(i)}$$

 $J\left(\delta \mathbf{x}_{0}^{(1)}\right)$

 $\left(\delta \mathbf{x}_{0}^{(2)}\right)$

 $I(\mathbf{x}_0)$

 $\delta x_0^{(5)}$

Data assimilation tools

Variational data assimilation: Incremental 4DVar

Objective

Avoid local minima by solving a convex optimization problem under the constraint of the linearized dynamical model.

Variational data assimilation: 4DVar adjoint construction

Variational data assimilation: 4DVar adjoint construction

Nonlinear dynamics

$$x_0 \xrightarrow{I_1} \dots \xrightarrow{I_j} x_j = I_j(x_{j-1}) \xrightarrow{I_{j+1}} \dots \xrightarrow{I_p} x_p$$

Tangent procedure

$$\delta \mathbf{x}_{0} \xrightarrow{I'_{1}} \dots \xrightarrow{I'_{j}} \delta \mathbf{x}_{j} = I'_{j}(\mathbf{x}_{j-1}) \cdot \delta \mathbf{x}_{j-1} \xrightarrow{I'_{j+1}} \dots \xrightarrow{I'_{p}} \delta \mathbf{x}_{p}$$

Adjoint procedure

$$\lambda_0 \underbrace{I^*{}_1}_{\dots} \dots \underbrace{I^*{}_j}_{j} \lambda_j = I^*{}_j(\mathbf{x}_{j-1}) \cdot \lambda_{j-1} \underbrace{I^*{}_{j+1}}_{\dots} \dots \underbrace{I^*{}_p}_{k} \lambda_p$$

Variational data assimilation: 4DVar adjoint construction

Innia_ IRMAR

irstea

Variational data assimilation: Ensemble Variationnal EnVar

Properties

- Obs. and dynamics non-linear
- Noises Gaussian, unbiased, white-in-time
- \rightarrow Sample based covariance (B)
- \rightarrow Time dependent prior (B)
- $\rightarrow\,$ No derivation of the adjoint model

Energy function $$\begin{split} &J(\mathbf{x}_0) = \frac{1}{2} \|\mathbf{x}_0 - \mathbf{x}_0^b\|_B^2 + \frac{1}{2} \int_{t_0}^{t_f} \|\mathbb{H}(\mathbf{x}) - \boldsymbol{\mathcal{Y}}\|_R^2 dt, \\ &\text{s.t.} \quad \partial_t \mathbf{x}(t, x) + \mathbb{M}(\mathbf{x}(t, x), u) = 0. \end{split}$$

- Change cost function in terms of weighting vector
- Propagation of B^{1/2} projected into observation space
- ightarrow Based on optimization theory
- $\rightarrow\,$ Fast operational implementation
- $\rightarrow\,$ Uncertainty sample-based or from optimization procedure
- \rightarrow Localization and inflation

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications Sequential assimilation Variational assimilation

Data assimilation publications: all fields vs fluid flow

Hayase (2015, Fluid Dyn. Res.)

Data assimilation: data-driven vs model-driven

Different modelling

Data assimilation: data-driven vs model-driven

Non exhaustive state of the art

Children of the second second

Data assimilation: data-driven vs model-driven

Variational vs Filtering approaches

Data assimilation: data-driven vs model-driven

3D vs 2D approaches

Data assimilation: data-driven vs model-driven

Focus

IRMAR

irste

Data assimilation: data-driven vs model-driven

AIAA JOURNAL Vol. 42, No. 3, March 2004

Generation of Three-Dimensional Turbulent Inlet Conditions for Large-Eddy Simulation

P. Druault* Université Pierre-et-Marie-Curie, 78210 Saint Cyr l'Ecole, France S. Lardeau[†] Imperial College of Science, Technology, and Medicine, London, England SW7 2BY, United Kingdom and J.-P. Bonnet.[†] F. Coiffet.[§] J. Delville.[¶] E. Lamballais.^{**} J. F. Largeau.[§] and L. Perret[§]

.-P. Bonnet,⁺ F. Coiffet,⁸ J. Delville,⁸ E. Lamballais,^{**} J. F. Largeau,⁸ and L. Perret Université de Poitiers, 86962 Futuroscope Chasseneuil CEDEX, France

A method for generating realistic (i.e., reproducing in space and time the large-scale coherence of the flows)

Data assimilation: data-driven vs model-driven

PHYSICS OF FLUIDS 20, 075107 (2008)

7)

Turbulent inflow conditions for large-eddy simulation based on low-order empirical model

Laurent Perret, ^{1,a} Joël Delville,² Rémi Manceau,² and Jean-Paul Bonnet² Laboratoire de Mécanique des Fluides (LMF), UMR CNRS 6598, Ecole Centrale de Nantes, 1 rue de la Noë BP 92101, F-44321 Nantes Cedex 3, France ²Laboratoire d'Etudes Aérodynamiques (LEA), ENSMA, CNRS, CEAT, Université de Poitiers, 43, route de L'aérodrome, F-80036 Poitiers, France

(Received 30 October 2007; accepted 3 June 2008; published online 22 July 2008)

Data assimilation: data-driven vs model-driven

IOP Publishing | The Japan Society of Fluid Mechanics

Fluid Dynamics Research

Fluid Dyn. Res. 47 (2015) 051407 (22pp)

doi:10.1088/0169-5983/47/5/051407

Hierarchy of hybrid unsteady-flow simulations integrating time-resolved PTV with DNS and their data-assimilation capabilities

Takao Suzuki¹ and Fujio Yamamoto²

$$\begin{split} \hat{\mathbf{u}}_{n+1}^{\text{Hyb}} &= \mathcal{N} \Big(\mathbf{u}_{n}^{\text{Hyb}} \Big), \\ \tilde{\mathbf{u}}_{n+1}^{\text{Hyb}} &= \hat{\mathbf{u}}_{n+1}^{\text{Hyb}} + \mathbf{K} \Big(\mathbf{u}_{n+1}^{\text{PIV}} - \hat{\mathbf{u}}_{n+1}^{\text{Hyb}} \Big), \quad \stackrel{\text{d}}{\cong} \\ \Big(\mathbf{u}_{n+1}^{\text{Hyb}} &= \mathcal{P} \Big(\bar{\mathbf{u}}_{n+1}^{\text{Hyb}} \Big) \Big), \end{split}$$

Types of algorithms

POD-Galerkin (Suzuki 2014) Conventional (Suzuki *et al* 2010) Kalman filter (Suzuki 2012)

Figure 5. Comparison of vorticity contours among the three hybrid algorithms at the same instant ($u_{scl}/h = 11.9$). The jet is ejected from left to right. (a) POD–Galerkin projection. (b) Conventional hybrid algorithm. (c) Kalman-filtered algorithm. (d) Raw PTV. Contour levels: $-5.1 \leqslant \omega \leqslant 5.1$ with a $\Delta \omega = 0.6$ increment for all.

Data assimilation: data-driven vs model-driven

Journal of Computational Physics 347 (2017) 207-234

A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows

M. Meldi*, A. Poux¹

Fig. 17. Isocontours of the time averaged normal velocity $\overline{u_y}$ taken at the streamwise section $x = 16\Lambda$. A zoom around the wake region is performed. Results for (a) the DNS calculation, (b) the LES simulation and (c) the observer estimator are shown, respectively.

Data assimilation: data-driven vs model-driven

Exp Fluids (2016) 57:139 DOI 10.1007/s00348-016-2225-6

RESEARCH ARTICLE

Dense velocity reconstruction from tomographic PTV with material derivatives

Jan F. G. Schneiders¹ · Fulvio Scarano¹

$$J = J_u + \alpha^2 J_{Du},\tag{6}$$

where α is a weighting coefficient (Sect. 2.3.3), J_{μ} is given by Eq. (7) and $J_{D\mu}$ is given by Eq. (8),

$$J_{\boldsymbol{u}} = \sum_{p} \|\boldsymbol{u}_{h}(\boldsymbol{x}_{p}) - \boldsymbol{u}_{m}(\boldsymbol{x}_{p})\|^{2}, \qquad (7)$$

$$J_{D\boldsymbol{u}} = \sum_{p} \left\| \frac{D\boldsymbol{u}_{h}}{Dt} (\boldsymbol{x}_{p}) - \frac{D\boldsymbol{u}_{m}}{Dt} (\boldsymbol{x}_{p}) \right\|^{2},$$
(8)

where u_h and Du_h/Dt are calculated from Eqs. (1) and (2) and are evaluated at the particle locations, x_{p_h} by linear interpolation from the computational grid. The cost function penalizes the difference between the PTV measurements and the velocity and material derivative at a single measurement time-instant calculated from the optimization variables. The optimization problem does not include time-integration of the vorticity transport equation.

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications

Sequential assimilation Variational assimilation

Wave in a rectangular flat bottom tank

Depth observations

Data assimilation approaches

- WEnKF (Combès et al., 2015, Fluid Dyn Res)
- Error model (obs. and dynamics)

Data assimilation results

Dynamical model

Shallow water model

$$\partial_t H + \nabla \cdot (H\mathbf{v}) = 0.$$

$$\partial_t (H\mathbf{v}) + \nabla \cdot (H\mathbf{v}\mathbf{v}) = -gH\eta + F.$$

 Reconstruct unobserved surface velocity
 IRMAR Instead

Wave in a rectangular flat bottom tank

Flow configuration

- $Lx \times Ly = 250 \text{ mm} \times 100 \text{ mm}$
- Initial free surface height difference h₀ = 1 cm
- Observations every $10\Delta t u_0/L_x$ leading to $St_{\rm obs} \simeq 24$, that was rather high !

Simulation parameters

- Shallow water model
- $n_x \times n_y = 222 \times 88$
- $\Delta t \, u_0 / L_x = 0.0042$

Assimilation parameters

- particle number N = 100
- $x_{init} = (0, 0, 0)$
- $\blacktriangleright \ \boldsymbol{X}_0 \sim \mathcal{N}(\boldsymbol{x}_{\mathrm{init}}, \boldsymbol{R}_0)$
- $\blacktriangleright \ \mathbf{W}_t^f \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_t)$
- ▶ $\mathbf{W}_t^g \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_t)$
- **R**₀ (0.05 h_0 ; 0.25 u_0 ; r_h)
- **R**_t (0.04 h_0 ; 0.06 u_0 ; r_h)
- **Q**_t (0.013 h_0^2 ; diag.)
- localization neige = 0.6

Suddenly expanding flume

Flow configurations

- ▶ *L* = 10 cm
- Inflow velocity and elevation oscillatory in phase at 1 Hz with H_{in} = 1 cm and V_{in} = 0.22 m/s

•
$$Fr = U_{\rm in} / \sqrt{g H_{\rm in}} = 0.7$$

Simulation parameters

- Shallow water model
- $n_x \times n_y = 200 \times 200$
- $\Delta t \, u_0 / L = 0.006$

Assimilation parameters

- particle number N = 100
- $x_{init} = (0, 0, 0)$
- $\blacktriangleright \ \boldsymbol{X}_0 \sim \mathcal{N}(\boldsymbol{x}_{\mathrm{init}}, \boldsymbol{R}_0)$
- ▶ $\mathbf{W}_t^f \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_t)$
- ▶ $\mathbf{W}_t^g \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_t)$
- **R**₀ (0.05 h_0 ; 0.25 u_0 ; r_h)
- **R**_t (0.04 h_0 ; 0.06 u_0 ; r_h)
- \mathbf{Q}_t (0.013 h_0^2 ; diag.)
- localization neight 0.6

Suddenly expanding flume

Non-uniform inlet velocity profile (with spatial complexity)

Suddenly expanding flume

Elevation error maps for singleObs and multiObs

Suddenly expanding flume

Velocity error maps for singleObs and multiObs

Cylinder wakes at Re=112

Dynamical model

 DNS with code Incompact3d (Laizet et al., 2010 JCP)

Data assimilation approaches

- Classical 4DVar approach from Gronskis et al. (2013)
- Inflow and initial condition control

Data assimilation results

- Reconstruct inflow and initial condition
- Reconstruct gap
- Influence of gap size & obs. frequency
- Reconstruct pressure, Lift & Drag

IRMAR

Cylinder wakes at *Re*=112

4DVar approach from Gronskis et al. (2013)

Cylinder wakes at Re=112

- 1. Uniform stagnant flow
- 2. Velocity interpolation

 From PIV sequence with Taylor's hypothesis

Cylinder wakes at Re=112

Gap reconstruction

-

Cylinder wakes at Re=112

Influence of gap size

Method's accuracy was strongly related to the size of the gap.

Influence of obs. frequency

$$\delta t_{obs} = f_{obs} D/U.$$

Cylinder wakes at Re=112

Pressure, Drag and Lift reconstruction via 4DVar Gronskis *et al.* (2018, CFTL)

- Reconstruct unobserved pressure
- Lift and Drag via control volume

Cylinder wake at Re=3900

Cross PIV observations

Dynamical model

Location Uncertainty Model Chandramouli et al. (2018, C. Fluids)

Data assimilation approaches

- Incremental 4DVar approach Chandramouli et al. (2018, submitted to JCP)
- Control inflow/outflow, initial condition and LES parameter
- Design 3D background from 2D cross PIV
 Chandramouli *et al.*(2018, submitted to Exp. Fluids)

Data assimilation results

 Reconstruct 3D flow and model parameter

IRMAR

How to build the background in 3D?

Snapshot Optimization method (Chandramouliet al., 2018)

 Flow with one direction of homegeneity

How to build the background in 3D?

Snapshot Optimization method (Chandramouliet al., 2018)

LES subgrid scale model

Chandramouliet al. (2018, C. Fluids)

Models under Location Uncertainty (MULC) :

$$\boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{w}(\boldsymbol{x},t) + \boldsymbol{\sigma}(\boldsymbol{x},t) d\dot{\boldsymbol{B}}_t$$

- u(x, t) is the instanteneous velocity field
- w(x, t) is the large scale drift
- $\sigma(\mathbf{x},t)d\dot{\mathbf{B}}_t$ stands for small scales

LES subgrid scale model

Chandramouliet al. (2018, C. Fluids)

NS formulation as derived in Memin [2014] :

Mass conservation :

$$d_t \rho_t + \boldsymbol{\nabla} \cdot (\rho \tilde{\boldsymbol{w}}) dt + \boldsymbol{\nabla} \rho \cdot \boldsymbol{\sigma} d\boldsymbol{B}_t = \frac{1}{2} \boldsymbol{\nabla} \cdot (\boldsymbol{a} \boldsymbol{\nabla} q) dt, \qquad (6)$$

$$\tilde{\boldsymbol{w}} = \boldsymbol{w} - \frac{1}{2} \boldsymbol{\nabla} \cdot \boldsymbol{a}$$
 (7)

For an incompressible fluid :

$$\nabla \cdot (\sigma d \boldsymbol{B}_t) = 0, \quad \nabla \cdot \tilde{\boldsymbol{w}} = 0,$$
 (8)

Momentum conservation :

$$\left(\partial_{t}\boldsymbol{w} + \boldsymbol{w}\boldsymbol{\nabla}^{T}(\boldsymbol{w} - \frac{1}{2}\boldsymbol{\nabla} \cdot \boldsymbol{a}) - \frac{1}{2}\sum_{ij}\partial_{x_{i}}(\boldsymbol{a}_{ij}\partial_{x_{j}}\boldsymbol{w})\right)\rho = \rho\boldsymbol{g} - \boldsymbol{\nabla}\boldsymbol{p} + \mu\Delta\boldsymbol{w}.$$

4DVar with LES subgrid scale model

3D flow reconstruction

4DVar with LES subgrid scale model

Subgrid scale parameter estimation

3D Particle Tracking Velocimetry: En4DVar-PTV

Data assimilation approaches

En 4DVar PTV approach from Yang et al.(2018, CFTL)

Data assimilation results

 Better particle position and velocity

Dynamical model

Sumary

- ▶ Data assimilation is a powerful technique to combine observations and models (sequential or variational)
 → for prediction, filtering or smoothing
- ► Data driven vs model driven (d vs m): when observations available << data to describe the system → model and regularization are paramount
- History of use is the search for suitable approximation that, even sub-optimal, works with non-linear, non Gaussian and high dimensional settings

Outlooks

- Dynamics model (large scale, uncertainties)
- From pseudo-observations (velocities) to observations (images)
- Control BC (inflow, outflow, ...) and model parameters (combined with IA)

